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TECHNOMETRICS ?, VOL. 23, NO. 4, NOVEMBER 1981 
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Technical Conference of the Chemical Division of the American Society for Quality Control 
and the Section on Physical and Engineering Sciences of the American Statistical Associ- 
ation in Gatlinburg, Tennessee, October 29-30, 1981. 

A Comparative Study of Tests for Homogeneity of 
Variances, with Applications to the Outer 
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Many of the existing parametric and nonparametric tests for homogeneity of variances, and 
some variations of these tests, are examined in this paper. Comparisons are made under the null 
hypothesis (for robustness) and under the alternative (for power). Monte Carlo simulations of 
various symmetric and asymmetric distributions, for various sample sizes, reveal a few tests that 
are robust and have good power. These tests are further compared using data from outer 
continental shelf bidding on oil and gas leases. 

KEY WORDS: Test for homogeneity of variances; Bartlett's test; Robustness; Power; Non- 
parametric tests; Monte Carlo. 

1. INTRODUCTION 
Tests for homogeneity of variances are often of 

interest as a preliminary to other analyses such as 
analysis of variance or a pooling of data from different 
sources to yield an improved estimated variance. For 
example, in the data base described in Section 4, if the 
variance of the logs of the bids on each offshore lease 
is homogeneous within a sale, then the scale pa- 
rameter of the lognormal distribution can be esti- 
mated using all the bids in the sale. In quality control 
work, tests for homogeneity of variances are often a 
useful endpoint in an analysis. 

The classical approach to hypothesis testing usually 
begins with the likelihood ratio test under the assump- 
tion of normal distributions. However, the dis- 
tribution of the statistic in the likelihood ratio test for 
equality of variances in normal populations depends 
on the kurtosis of the distribution (Box 1953), which 
helps to explain why that test is so sensitive to depar- 
tures from normality. This nonrobust (sometimes 
called "puny") property of the likelihood ratio test has 
prompted the invention of many alternative tests for 
variances. Some of these are modifications of the like- 
lihood ratio test. Others are adaptations of the F test 

to test variances rather than means. Many are based 
on nonparametric methods, although their modifi- 
cation for the case in which the means are unknown 
often makes these tests distributionally dependent. 

Among the many possible tests for equality of vari- 
ances, one would hope that at least one is robust to 
variations in the underlying distribution and yet sensi- 
tive to departures from the equal variance hypothesis. 
However, recent comparative studies are not reassur- 
ing in this regard. For example, Gartside (1972) stud- 
ied eight tests and concluded that the only robust 
procedure was a log-anova test that not only has poor 
power, but also depends on the unpleasant process of 
dividing each sample at random into smaller subsam- 
ples. Layard (1973) reached a similar conclusion re- 
garding the log-anova test, but indicated that two 
other tests in his study of four tests, Miller's jackknife 
procedure and Scheff6's chi squared test, did not suffer 
greatly from lack of robustness and had considerably 
more power, at least when sample sizes were equal. 
These tests are included in our study as Mill and Sch2. 
Layard indicated a reluctance to use these tests when 
sample sizes are less than 10, and yet this is the case of 
interest to us, as we explain later. The jackknife pro- 

351 

This content downloaded from 61.190.7.73 on Mon, 30 Sep 2013 22:38:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


W. J. CONOVER, MARK E. JOHNSON, AND MYRLE M. JOHNSON 

cedure appeared to be the best of the six procedures 
investigated by Hall (1972) in an extensive simulation 
study, while Keselman, Games, and Clinch (1979) con- 
clude that the jackknife procedure (Mill) has unstable 
error rates (Type I error) when the sample sizes are 
unequal. They conclude from their study of 10 tests 
that "the current tests for variance heterogeneity are 
either sensitive to nonnormality or, if robust, lacking 
in power. Therefore these tests cannot be rec- 
ommended for the purpose of testing the validity of 
the ANOVA homogeneity assumption." The four tests 
studied by Levy (1978) all "were grossly affected by 
violations of the underlying assumption of normality." 

The potential user of a test for equality of variances 
is thus presented with a confusing array of infor- 
mation concerning which test to use. As a result, many 
users default to Bartlett's (1937) modification of the 
likelihood ratio test, a modification that is well known 
to be nonrobust and that none of the comparative 
studies recommends except when the populations are 
known to be normal. The purpose of our study is to 
provide a list of tests that have a stable Type I error 
rate when the normality assumption may not be true, 
when sample sizes may be small and/or unequal, and 
when distributions may be skewed and heavy-tailed. 
The tests that show the desired robustness are com- 
pared on the basis of power. Further, we hope that 
our method of comparing tests may be useful in future 
studies for evaluating additional tests of variance. 

The tests examined in this study are described 
briefly in Section 2. Fifty-six tests for equality of vari- 
ances are compared, most of which are variations of 
the most popular and most useful parametric and 
nonparametric tests available for testing the equality 
of k variances (k > 2) in the presence of unknown 
means. Some tests not studied in detail are also men- 
tioned in Section 2, along with the reason for their 
exclusion. This coverage is by far the most extensive 
that we are aware of and should provide valuable 
comparative information regarding tests for variances. 

The simulation study is described in Section 3. Each 
test statistic is computed 1,000 times in each of 91 
situations, representing various distributions, sample 
sizes, means, and variances. Nineteen of these sample 
situations have equal variances and are therefore 
studies of the Type I error rate, while the remaining 72 
situations represent studies of the power. 

The basic motivation for this study is described in 
Section 4. The lease production, and revenue (LPR) 
data base includes, among other data, the actual 
amount of each sealed bid submitted by oil and gas 
companies on individual tracts offered by the federal 
government in all of the sales of offshore oil and gas 
leases in the United States since 1954. The results of 
several tests for variances applied to those sales are 

described. A final section presents the summary and 
conclusions of this study. 

2. A SURVEY OF k-SAMPLE TESTS FOR 
EQUALITY OF VARIANCES 

For i = 1, ..., k, let {Xij} be random samples of size 
ni from populations with means pi and variances of. 
To test the hypothesis of equal variances, one ad- 
ditional assumption is necessary (Moses 1963). One 
possible assumption is that the Xij's are normally 
distributed. This leads to a large number of tests, some 
with exact tables available and some with only 
asymptotic approximations available, for the dis- 
tributions of the test statistics. Another possible as- 
sumption is that the Xij's are identically distributed 
when the null hypothesis is true. This assumption 
enables various nonparametric tests to be formulated. 
In practice, neither assumption is entirely true, so that 
all of these tests for variances are only approximate. It 
is appropriate to examine all of the available tests for 
their robustness to violations of the assumptions. In 
this section we present a (nearly) chronological listing 
of tests for equal variances and a summary of these 
tests in Tables 1 through 4. Most of the tests in Tables 
1 through 3 are based on some modification of the 
likelihood ratio test statistic derived under the as- 
sumption of normality. Tests that are essentially 
modifications of the likelihood ratio test or that other- 
wise rely on the assumption of normality are given in 
Table 1. Modifications to those tests, employing an 
estimate of the kurtosis, appear in Table 2. They are 
asymptotically distribution free for all parent popu- 
lations, with only minor restrictions. Tests based on a 
modification of the F test for means are given in Table 
3, along with the jackknife test, which does not seem 
to fit anywhere else. Finally, Table 4 presents modifi- 
cations of nonparametric tests. The modification con- 
sists of using the sample mean or sample median 
instead of the population mean when computing the 
test statistic. Only nonparametric tests in the class of 
linear rank tests are included here, because this class 
of tests includes all locally most powerful rank tests 
(Hajek and Sidak 1967). Therefore, in Table 4, only 
the scores, a, i, for these tests are presented. From 
these scores, chi squared tests may be formulated 
based on the statistic 

k 
X2 = E ni(Ai-a)2/V2, 

i= 1 
(2.1) 

where Ai = mean score in the ith sample, a = overall 
mean score = 1/N EiN= aN.i, and V2 = (1/N - 1) 

1= (aN.- a)2, which is compared with quantiles 
from a chi squared distribution with k - 1 degrees of 
freedom. Alternatively, the statistic 
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Table 1. Tests That Are Classically Based on an 
Estimate of Sampling Fluctuation Assuming Nor- 
mality 
Abbreviation 

of Test Test Statistic and Distribution 

2 H-k 2nk 
1 

2 N-P 1b T - T1 = N ln(-- s ) - n n (i n- s) 

Bar. x_1 -2 T where T2 - (N-k)ln s2 - n s 

and C - 1 + 3(- - i I - and C" 1 + 3(23s-1 -_) - ]N-k 

Coch max s. 

i i 

B-K ln(max s )-ln(min si) 

(n/2)1 

Hart 2 
max 

si 

min si 

max ri 
min ri 

See Pearson and Hartley (1970), p. 203 
for special tables. 

See Pearson and Hartley (1970), p. 177 
for special tables. 
(n-average sample size) 

See Pearson and Hartley (1970), p. 202 
for special tables. 

See Pearson and Hartley (1970), p. 264 
for special tables. 

B--ar3, F~w T2 where w - (k+l)/(C-1)2 Far 
k-l,w (k-)(b-T2) 

and b - 
Cw 

(See Bar for C and T2) 

2 k (mi_m)2 
2- 

Sam Xk-1 ' E where m - (1- 2 )s-2/3 
a 

9(ni-l) 

a2i 2/[9(n-l)s4/3] 

(m/a2) 
and m 2 i 

E(1/a ) 

Bar:range [(N-k)ln(H E (ni-l)(~ )2) - Z(ni-)ln( )2 1/C 
H-k i i d5 i S) (d I 

(See Bar for C) See Pearson and Hartley (1970), p. 201 
for special tables. 

Lehl X l " T3/2 where T3 - E(ni-l)(Pi- 2 k (nj- )2 Xk- 1 3 3 i N-k 
E 

(n3-S)P) 

and P - ln s2 

Leh2 k_1 - (N-k)T3/(2N-4k) (See Lehl for T3) 

F= X2/(k- 1) (2.2) 
(N - 1 - X2)/(N - k) (2.2) 

may be compared with quantiles from the F dis- 
tribution with k - 1, N - k degrees of freedom. 

In the following descriptions of the tests, we let Xi,, 
Xi, and ri denote the ith sample mean, median, and 
range, respectively, while X denotes the overall mean. 
The ith sample variance, with divisor ni - 1, is si. In 
addition, 

N= ni,, s2 = (n,i - l)s,/(N- k), 
and 

F(Xj) - ,i nX - X)2/(k - 1) (2.3) i, tZ u a (X - o ,)vi(N - k) ( .3) 
is the usual one-way analysis of variance test statistic. 

In tests for equal variances, F is computed on some 
transformation of the Xij's rather than on the X1j's 
themselves. 

Comments on the various tests are now presented. 
The notation med refers to the replacement of Xi with 
Xi in the test statistic in an attempt to improve the 
robustness of the test. 

N-P. The test proposed by Neyman and Pearson 
(1931) is the likelihood ratio test under normality. We 
also examine the modification N-P :med. 

Bar. Bartlett (1937) modified N-P to "correct for 
bias." The resulting test is probably the most common 
used for equality of variances. It is well known to be 
sensitive to departures from normality. Recent papers 
by Glaser (1976), Chao and Glaser (1978), and Dyer 
and Keating (1980) give methods for finding the exact 
distribution of the test statistic. We also examine 
Bar:med. 

Coch. The test introduced by Cochran (1941) was 
considerably easier to compute than the tests up to 
that time. With today's computers the difference in 
computation time is slight, however. We also look at 
Coch :med. 

B-K. Another attempt to simplify calculations re- 
sulted in this test by Bartlett and Kendall (1946), 
which relies on the fact that In s2 is approximately 
normal and uses tables for the normalized range in 
normal samples. We do not examine this test because 
of its equivalence to the following test. 

Hart. Four years after B-K this test by Hartley 
(1950) was presented. Well known as the "F-max" test, 
it is merely an exponential transformation of B-K. An 
advantage of this test is the exact tables available for 
equal sample sizes (David 1952). We also examine 
Hart :med. 

Table 2. Tests That Attempt To Estimate Kurtosis 
Abbreviation 

of Test 

Bar 1 

Bar2 

Schl 

Sch2 

Test Statistic and Distribution 

(See Bar for T2 and C) 

T NEE(X ij-Xi4 
2 2 - i1 i 

Xk-_ 1 where y - 3 
C(l+y/2) [E(ni-l)sI2 

T2 2 3 (See Lehl for T3, Barl for y) 

2+(l- )Y 

2 T3 
Xk-1 + k - (See Lehl for T3, Bar2 for y) 
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Table 3. Tests Based on a Modification of the F 
Test for Means ( see equation ( 2. 3 ) for F ( ) ) 

Levl Fk-, N-k F(IX -Xil) 

Lev2 Fk-1, N-k = F((Xij-Xi)2) 

Lev3 Fk-1, N-k = F(ln(Xij -i)2) 

Lev4 
Fk-l, N-k = F ( I X i l) 

Mill F 1 Nk = F(Uij) where Uj = ni in si -(ni -)ln sij 

2 1 2 2 and sij2 = n-2 [(ni-1)si-ni(Xij-Xi) /(ni-O)] 

Cad. A desire for simplification led to replacing the 
variance in Hart with the sample range in a paper by 
Cadwell (1953). Exact tables for equal sample sizes are 
given by Harter (1963) for k = 2 and Leslie and Brown 
(1966) for k < 12. We do not examine this test because 
we feel that the computational advantages are no 
longer real with present-day software. 

Barl. Box (1953) showed that the asymptotic dis- 
tribution of Bar was dependent on the common kur- 
tosis of the sampled distributions and that by dividing 
Bar by (1 + y/2), where y = E(Xij - )4/a - 3, the 
test would be asymptotically distribution free, pro- 
vided the assumption of common kurtosis was met. 
Our form for this modification of Bar involves esti- 
mating y with the sample moments, a suggestion that 
Layard (1973) attributes to Scheffe (1959). We also 
examine Barl:med. Bar2 and Bar2:med result from a 
different estimator for y as given by Layard. 

Box. An interesting approach to obtaining a more 
robust test for variance involves using the one-way 
layout F statistic, which is known to be quite robust. 
A concept suggested by Bartlett and Kendall (1946) 
was developed by Box (1953) into a test known as the 
log-anova test. For a preselected, arbitrary integer 
m > 2, each sample is divided into subsamples of size 
m in some random manner. (See Martin and Games 
1975, 1977 and Martin 1976 for suggestions on the 
size of m.) Remaining observations either are not used 
or are included in the final subsample. The sample 
variance si is computed for each subsample, 
i = 1, ..., k, j= 1, ..., [ni/m] = Ji. A log trans- 
formation Yij = In sij then makes the variables more 
nearly normal, and F(Y1j) is used as a test statistic. 
Subsequent studies by Gartside (1972), Layard (1973), 
and Levy (1975) confirmed the robustness of this 
method, but also revealed a lack of power as com- 
pared with other tests that have the same robustness. 

A modification that leads to a more nearly normal 
sample is attributed to Bargmann by Gartside (1972). 
It uses Wij = wi(ln sij + ci), where wi and ci are nor- 
malizing constants. However, the random method of 
subdividing samples and the possibility of not using 
all of the observations make these procedures unat- 

tractive to the practitioner. For this reason we do not 
include these tests in our study. A Monte Carlo com- 
parison of these methods with the jackknife methods 
(see Mill) is presented by Martin and Games (1977). 

Mood. The first nonparametric test for the variance 
problem was presented by Mood (1954). It, like all of 
the nonparametric tests, assumes identical dis- 
tributions under the null hypothesis. In particular, this 
requires equal means, or a known transformation to 
achieve equal means, which is often not met in appli- 
cations. Therefore, we adapt the Mood test and all of 
the nonparametric tests as follows. Instead of letting 
Rij be the rank of Xij when the means are equal or of 
(Xij - p) when the means are unequal but known, we 
let Rij be the rank of (Xij - X). Each Xij is then 
replaced by the score aN, Rij based on this rank. The 
result is a test that is not nonparametric but may be as 
robust and powerful as some of its parametric com- 
petitors. The use of Xi instead of Xi results in 
Mood:med, which we also examine. The chi squared 
approximation and the F approximation for each test 
lead to four variations, which are studied. 

F-A-B. Although the Mood test is a quadratic func- 
tion of Rij, this test introduced by Freund and Ansari 
(1957) and further developed by Ansari and Bradley 
(1960) is a linear function of Rj. Again, we let Rij be 
the rank of (Xij - X). We examine four variations of 
F-A-B (see Mood). The B-D test was introduced by 
Barton and David (1958) shortly after the F-A-B test 
and is similar to the F-A-B test in principle. Whereas 
the F-A-B scores are triangular in shape, the B-D 
scores follow a V shape with the large scores at the 
extremes and the small scores at the grand median. 
The result is a test with the same robustness and 
power as F-A-B. The same can be said for the S-T test, 

Table 4. Linear Rank Tests (scores may be used in 
equations (2. 1), (2.2), or (2.3) ) 

Abbreviation 
of Test 

Score aNR is a function of Rij, 
Score Function aN,i where Rij is the rank of: 

Mood (i- N1)2 

F-A-B 2 - ji- 2 1-1, 2, 3,...3, 2, 1 

B-D ...,3, 2, 1, 1, 2, 3, ... 

S-T 1, 4, 5,..., 6, 3, 2 

Capon [E(ZN,i)2 where ZN, is the i th 

order statistic from a standard 
normal random sample of size N 

-i1 2 Klotz [~ (N~+) where n(x) is the 

standard normal distribution 
function 

T-G i 

S-R i2 

(e-1 1 + 
i 

(See Klotz for 0) 

(Xi-Xi) 

(X -X ) 

(X ij-X) 

(X ij-Xi ) 

(X ij-X i) 

I xij-x i 

I Xij -Xi 

I Xl - il 
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introduced by Siegel and Tukey (1960) at about the 
same time. The only advantage of the S-T test is that 
tables for the Mann-Whitney test may be used; no 
special exact tables are required. We do not examine 
the B-D and S-T tests here because the results would 
be essentially the same as those found for F-A-B. 

Schl. The test statistic of this parametric procedure, 
attributed by Layard (1973) to Scheffe (1959), resem- 
bles in some respects the numerator of an F statistic 
computed on si, weighted by the degrees of freedom 
ni - 1. The denominator is a function of the (assumed) 
common kurtosis, which in practice must be esti- 
mated. We use the sample kurtosis for y, and also 
examine Schl :med. The variations Sch2 and Sch2 :med 
arise when Layard's estimator for y is used. 

Lehl. Lehmann's (1959) suggested procedure is the 
same as Schl, but with y = 0 as in normal dis- 
tributions. Ghosh (1972) shows that multiplication by 
(N - k)/(N - 2k) gives a distribution closer to the chi 
square. We call this variation Leh2 and examine 
Lehl :med and Leh2:med also. 

Levi. Levene (1960) suggested using the one-way 
analysis of variance on the variables Zij = I Xij - xi 
as a method of incorporating the robustness of that 
test into a test for variance. Further variations sugges- 
ted by Levene involve Zh/2 (Lev2), In Zij (Lev3), and 
Zj (Lev4). We also consider Levl :med, recommended 
by Brown and Forsythe (1974), and Lev4:med, but do 
not examine Lev3 :med because In 0 = - oo occurs 
with odd sample sizes. We also do not consider use of 
the trimmed mean as Brown and Forsythe did, largely 
because their results indicated no advantages in using 
this variation. 

Capon. Instead of using scores that are a quadratic 
function of the ranks as Mood had done, Capon 
(1961) suggested choosing scores that give optimum 
power in some sense. The result is this normal scores 
test, which is locally most powerful among rank tests 
against the normal-type alternatives, and asymptoti- 
cally locally most powerful among all tests for this 
alternative. 

Klotz. Shortly thereafter, Klotz (1962) introduced 
another normal scores test that used the more con- 
venient normal quantiles. The result has possibly less 
power locally for small sample sizes, but has the same 
asymptotic properties as Capon. Because of its con- 
venience, we examine the Klotz test, but not the very 
similar Capon. As in Mood, four variations of Klotz 
are considered. 

Bar :range. Implicit in the literature since Patnaik's 
(1950) paper on the use of the range instead of the 
variance, but not explicitly mentioned until Gartside 
(1972), is this variation of Bar that uses the standard- 
ized range instead of the variance. The standardizing 
constants di are available from Pearson and Hartley 
(1970, p. 201). The number of degrees of freedom of the 

resulting chi squared test is adjusted from (k - 1) to 
vi, where vi is available in the same reference. We do 
not examine this test because in general the range is 
less efficient than the sample variance. 

Mill. The innovative jackknife procedure was ap- 
plied to variance testing by Miller (1968). The jack- 
knife procedure relies on partitioning the samples into 
subsamples of some predetermined size m. We take 
m = 1, to remove the chance variation involved with 
m > 1. We do not examine Mill :med. 

Bar3. Dixon and Massey (1969) reported a vari- 
ation of Bar that uses the F distribution. We also 
examine Bar3 :med. 

Sam. The cube root of s2 is more nearly normal 
than s2, which leads to this test by Samuiddin (1976). 
We also examined Sam :med. 

F-K. Fligner and Killeen (1976) suggest ranking 
|Xij| and assigning increasing scores aN, = i, 
aN, i = i2, and aN. i = - 1(1/2 + (i/2(N + 1))) based on 
those ranks. We suggest using the ranks of| Xi - Xi | 
and call the first test T-G after Talwar and Gentle 
(1977), who used a trimmed mean instead of Xi. The 
second test, called the squared ranks test S-R, was 
discussed by Conover and Iman (1978), but has roots 
in earlier papers by Shorack (1965), Duran and 
Mielke (1968), and others. We denote the third test by 
F-K, even though we have taken liberties with their 
suggestion. We also examine, as with Mood, the four 
variations associated with each test. We do not exam- 
ine Fligner and Killeen's suggestion of using the grand 
median in place of Xi. 

This list of tests does not include others such as one 
by Moses (1963) that relies on a random pairing 
within samples or one by Sukhatme (1958) that is 
closely related to some of the linear rank tests already 
included. Also, the Box-Anderson (1955) permutation 
test for two samples, which Shorack (1965) highly 
recommends, was found by Hall (1972) to have Type I 
error rates as high as 27 percent in the multisample 
case with normal populations at a = .05, so it is not 
included in our study. However, the list is extensive 
enough for our purposes, namely, to obtain a listing of 
tests for variances that appear to have well-controlled 
Type I error rates, and to compare the power of the 
tests. This is accomplished in the next section. 

3. THE RESULTS OF A SIMULATION STUDY 
In the search for one or more tests that are robust 

as well as powerful, it became necessary to obtain 
pseudorandom samples from several distributions, 
using several sample sizes and various combinations 
of variances. The simulation study is described in this 
section. The results in terms of percent of times the 
null hypothesis was rejected are summarized in Tables 
5 and 6. 

For symmetric distributions we chose the uniform, 
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normal, and double exponential distributions. Uni- 
form random numbers were simulated using CDC's 
uniform generator RANNUM, which is a multi- 
plicative congruential generator type. The normal and 
double exponential variates were obtained from the 
respective inverse cumulative distribution functions. 
Four samples were drawn with respective sample sizes 
(nl, n2, n3, n4) = (5, 5, 5, 5), (10, 10, 10, 10), (20, 20, 20, 
20), and (5, 5, 20, 20). The null hypothesis of equal 
variances (all equal to 1) was examined along with the 
four alternatives (a2, a2 , a2, 2) = (1, 1, 1, 2), (1, 1, 1, 
4), (1, 1, 1, 8), and (1, 2, 4, 8). The mean was set equal to 
the standard deviation in each population under the 
alternative hypothesis. Zero means were used for Ho. 
Each of these 60 combinations of distribution type, 
sample size, and variances was repeated 1,000 times, 
so that the 56 test statistics mentioned in Section 2 
were computed and compared with their 5 percent 
and 1 percent nominal critical values 60,000 times 
each. The observed frequency of rejection of the null 
hypothesis is reported in Table 5 for normal dis- 
tributions and in Table 6 for double exponential dis- 
tributions. The figures in parentheses in those tables 
represent the averages over the four variance combi- 
nations under the alternative hypothesis. The stan- 
dard errors of all entries in Tables 5 and 6 are less 
than .016. The results for the uniform distribution are 
not reported here to save space. A table with the 
results for the uniform distribution is available from 
the authors on request. 

The corresponding figures for the asymmetric case 
were obtained by squaring the random variables ob- 
tained in the symmetric case to obtain highly skewed 
and extremely leptokurtic distributions. To be more 
specific, we used aX2 + u rather than (aXi + #i)2, 
where Xi represents the null distributed random vari- 
able, because the latter transformation does not allow 
as much control over means and variances as does the 
former. The three distributions (uniform)2, (normal)2, 
and (double exponential)2, in combination with two 
sample sizes (10, 10, 10, 10) and (5, 5, 20, 20) and the 
five variance combinations (the null case and four 
alternatives, as before) gave a total of 30 combi- 
nations. For each combination, 1,000 repetitions were 
run for each of the 56 test statistics. The average 
frequency of rejection, averaged over the four variance 
combinations under the alternative, is presented in 
Tables 5 and 6 also. 

The columns in Tables 5 and 6 represent the vari- 
ous sample sizes under symmetric and asymmetric 
distributions. For convenience, the nonsymmetric dis- 
tributions are simply called asymmetric, although this 
is not meant to imply that the simulation results are 
attributable to the skewness of those distributions 
rather than to the extreme leptokurtic nature of those 
same asymmetric distributions. The seventh column 

in Table 5 represents a special study chosen to resem- 
ble the application situation described in Section 4. In 
brief, 13 samples in which the sample sizes were 2 
(7 samples), 3 (2 samples), 4, 7 (2 samples), and 13, were 
drawn from standard normal distributions. This was 
repeated 1,000 times and 55 test statistics (Mill cannot 
be computed for ni = 2) were computed each time. 
This case was investigated to see how the tests might 
behave under conditions typically encountered in oil- 
lease-bidding data. 

There are many different ways of interpreting the 
results of Tables 5 and 6, just as there are many ways 
of defining what is a "good" test as opposed to a "bad" 
test. We will define a test to be robust if the maximum 
Type I error rate is less than .10 for a 5 percent test. 
The four tests that qualify under this criterion, and 
their maximum estimated test size in parentheses, are 
Bar2:med (.071), Levl:med (.060), Lev2:med (.078), 
and F-K:med X2 (.099). We include F-K:med F (.112) 
in this group of robust tests also, because in 18 of the 
19 null cases examined the estimated test size was less 
than .084, which is well under control. Of these five 
tests the second, fourth, and fifth tests appear to have 
slightly more power than the other two. It is interest- 
ing to note that if the qualifications for robustness are 
loosened somewhat to max test size < .15, only one 
new test is included, Lev4:med (.145). Two additional 
tests have max test size < .20. These are Lev2 (.163) 
and Bar2 (.172). The increase in the Type I error rates 
of Lev2 and Bar2 over Lev2:med and Bar2:med is 
accompanied by only a 40 percent relative increase in 
power. The other test has less power. Therefore, a 
reasonable conclusion seems to be that the five tests 
with max test size < .112 qualify as robust tests for 
variances, with the tests Levl :med, F-K:med X2, and 
its sister test F-K:med F having slightly more power 
than the other two. Notice the resemblance among 
these three tests. The first uses an analysis of variance 
on Xij- Xi|, while the second and third convert 
I Xij- Xi to ranks and then to normal type scores, 
where they are then subjected to either a chi squared 
test or an analysis of variance F test. 

Similar conclusions were drawn using a = .01. The 
only tests with a reasonably well-controlled test size 
are the same five tests that were selected using a = .05. 
On the basis of demonstrated power at a = .01, the 
same three tests mentioned for a = .05 again appear 
to be the best. Therefore, the number of rejections for 
each test at a = .01 is not reported. 

If we consider only those five cases that have sym- 
metric distributions, there are many additional tests 
that qualify as robust under the above definition. The 
five that show the most power, in order of decreasing 
power, are Bar2, Klotz:med F, Klotz:med X2, Lev 
4 :med, and S-R:med F. However, the power of these 
five tests for symmetric distributions is about the same 
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TESTS FOR HOMOGENEITY OF VARIANCES 

Table 5. For Normal and (Normal)2 Distributions, Proportion of Times the Null Hypothesis of Equal 
Variance Was Rejected by the VNull Hypothesis (test size) and (in parentheses) 
Under the Alternative Hypothesis (power), at a = .05 

Normal Distribution: Symmetric 

n=(5,5,5,5) (10,10,10,10) 

TABLE 1 TESTS 

.103 (.455) 

.115 (.454) 

.033 (.298) 

.034 (.299) 

.040 (.356) 

.041 (.353) 

.028 (.231) 

.029 (.235) 

.034 (.303) 

.037 (.306) 

.022 (.269) 

.019 (.274) 

.094 (.377) 

.104 (.381) 

.179 (.514) 

.198 (.515) 

.069 (.662) 

.081 (.662) 

.051 (.600) 

.052 (.596) 

.045 (.602) 

.042 (.604) 

.055 (.554) 

.058 (.552) 

.051 (.600) 

.053 (.597) 

.046 (.587) 

.048 (.582) 

.082 (.618) 

.085 (.615) 

.108 (.665) 

.106 (.665) 

(20,20,20,20) 

.071 (.812) 

.077 (.814) 

.060 (.796) 

.064 (.798) 

.043 (.791) 

.045 (.792) 

.052 (.774) 

.056 (.776) 

.060 (.796) 

.064 (.798) 

.058 (.794) 

.064 (.795) 

.069 (.792) 

.078 (.794) 

.079 (.806) 

.087 (.807) 

(Normal)2: Asymmetric 

(5,5,20,20) 

.104 (.759) 

.098 (.750) 

.049 (.646) 

.049 (.630) 

.138 (.706) 

.151 (.684) 

.218 (.739) 

.213 (.720) 

.049 (.648) 

.049 (.633) 

.045 (.607) 

.054 (.594) 

.102 (.731) 

.099 (.722) 

.119 (.761) 

.112 (.750) 

Special 
Study 

.625 

.639 

.032 

.034 

.234 

.223 

.625 

.627 

.040 

.046 

.008 

.006 

.498 

.511 

.745 

.748 

(10,10,10,10) 

.674 (.826) 

.687 (.830) 

.614 (.788) 

.629 (.795) 

.480 (.663) 

.493 (.669) 

.604 (.772) 

.613 (.777) 

.614 (.788) 

.629 (.796) 

.606 (.781) 

.616 (.790) 

.664 (.814) 

.676 (.819) 

.697 (.837) 

.717 (.844) 

(5,5,20,20) 

.663 (.865) 

.669 (.864) 

.567 (.797) 

.577 (.798) 

.576 (.768) 

.592 (.762) 

.720 (.882) 

.725 (.879) 

.570 (.799) 

.579 (.799) 

.538 (.764) 

.547 (.766) 

.634 (.858) 

.648 (.854) 

.673 (.873) 

.680 (.870) 

TABLE 2 TESTS 

.273 (.612) 

.121 (.435) 

.047 (.132) 

.007 (.039) 

.272 (.603) 

.170 (.477) 

.112 (.242) 

.056 (.136) 

.154 (.709) 

.087 (.638) 

.053 (.383) 

.024 (.281) 

.163 (.710) 

.114 (.649) 

.079 (.419) 

.048 (.322) 

.105 (.822) 

.082 (.807) 

.051 (.734) 

.033 (.696) 

.119 (.819) 

.090 (.802) 

.063 (.720) 

.049 (.682) 

.123 (.729) 

.092 (.667) 

.048 (.505) 

.029 (.431) 

.176 (.790) 

.140 (.737) 

.103 (.645) 

.072 (.577) 

.648 

.397 

.050 

.014 

.808 

.722 

.510 

.402 

.487 (.689) 

.365 (.549) 

.143 (.249) 

.043 (.100) 

.558 (.742) 

.443 (.630) 

.247 (.380) 

.137 (.228) 

.301 (.545) 

.182 (.414) 

.083 (.206) 

.021 (.090) 

.421 (.706) 

.321 (.605) 

.206 (.447) 

.122 (.312) 
TABLE 3 TESTS 

.083 (.303) .064 (.543) 

.002 (.065) .025 (.437) 

.057 (.235) .047 (.489) 

.011 (.080) .015 (.388) 

.069 (.192) .062 (.337) 

.091 (.283) .069 (.493) 

.000 (.004) .037 (.383) 

.030 (.134) .040 (.435) 

.058 (.768) 

.039 (.732) 

.048 (.774) 

.033 (.749) 

.057 (.554) 

.060 (.716) 

.034 (.659) 

.054 (.752) 

.060 (.583) 

.032 (.521) 

.055 (.456) 

.035 (.383) 

.069 (.461) 

.070 (.571) 

.049 (.552) 

.077 (.550) 

.263 

.057 

.163 

.048 

.403 

.372 

.020 

.349 (.561) .293 (.489) 

.054 (.184) .043 (.142) 

.097 (.208) .116 (.107) 

.014 (.061) .044 (.029) 

.461 (.637) .471 (.699) 

.491 (.688) .477 (.710) 

.144 (.297) .104 (.337) 

.153 (.254) .172 (.324) 
TABLE 4 TESTS 

Mood X2 .070 (.247) 
Mood F .091 (.296) 
Mood:med X2 .002 (.033) 
Mood:med F .009 (.063) 

F-A-B X2 .070 (.193) 
F-A-B F .094 (.240) 
F-A-B:med X2 .000 (.000) 
F-A-B:med F .000 (.000) 

Klotz X2 .057 (.265) 
Klotz F .078 (.311) 
Klotz:med X2 .011 (.078) 
Klotz:med F .015 (.104) 

S-R X2 .060 (.248) 
S-R F .093 (.296) 
S-R:med X2 .000 (.015) 
S-R:med F .003 (.038) 

F-K X2 .044 (.248) 
F-K F .061 (.296) 
F-K:med X2 .004 (.058) 
F-K:med F .009 (.081) 

T-G X2 .068 (.203) 
T-G F .089 (.247) 
T-G:med X2 .000 (.000) 
T-G:med F .000 (.000) 
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N-P 
N-P:med 
Bar 
Bar:med 
Coch 
Coch:med 
Hart 
Hart: med 
Bar3 
Bar3 :med 
Sam 
Sam:med 
Lehl 
Lehl :med 
Leh2 
Leh2: med 

Barl 
Barl:med 
Bar2 
Bar2 :med 
Schl 
Schl:med 
Sch2 
Sch2:med 

Levl 
Levl:med 
Lev2 
Lev2:med 
Lev3 
Lev4 
Lev4:med 
Mill 

.069 (.472) 

.077 (.494) 

.036 (.342) 

.041 (.367) 

.058 (.395) 

.068 (.415) 

.034 (.276) 

.037 (.294) 

.053 (.526) 

.064 (.547) 

.031 (.407) 

.039 (.424) 

.062 (.474) 

.074 (.494) 

.023 (.332) 

.029 (.353) 

.043 (.521) 

.052 (.540) 

.018 (.413) 

.020 (.436) 

.058 (.397) 

.067 (.420) 

.027 (.268) 

.033 (.288) 

.060 (.711) 

.063 (.716) 

.038 (.657) 

.038 (.663) 

.056 (.634) 

.058 (.643) 

.029 (.566) 

.030 (.575) 

.058 (.772) 

.062 (.777) 

.034 (.734) 

.036 (.740) 

.057 (.709) 

.059 (.714) 

.032 (.658) 

.035 (.664) 

.051 (.776) 

.053 (.782) 

.033 (.746) 

.033 (.751) 

.056 (.636) 

.059 (.643) 

.025 (.564) 

.026 (.573) 

.066 (.562) 

.076 (.578) 

.032 (.491) 

.036 (.506) 

.060 (.516) 

.065 (.532) 

.040 (.486) 

.043 (.504) 

.062 (.538) 

.072 (.551) 

.033 (.472) 

.033 (.490) 

.060 (.566) 

.068 (.586) 

.026 (.491) 

.032 (.509) 

.050 (.528) 

.054 (.544) 

.030 (.470) 

.032 (.489) 

.058 (.525) 

.065 (.540) 

.035 (.472) 

.038 (.491) 

.215 

.317 

.059 

.094 

.269 

.380 

.033 

.065 

.152 

.222 

.050 

.084 

.228 

.322 

.054 

.092 

.127 

.174 

.034 

.054 

.305 

.418 

.027 

.053 

.752 (.862) 

.768 (.874) 

.410 (.577) 

.433 (.595) 

.728 (.838) 

.741 (.852) 

.395 (.550) 

.418 (.572) 

.713 (.841) 

.741 (.855) 

.352 (.554) 

.387 (.574) 

.613 (.770) 

.630 (.783) 

.171 (.322) 

.183 (.340) 

.422 (.623) 

.442 (.646) 

.066 (.218) 

.084 (.235) 

.610 (.753) 

.621 (.770) 

.256 (.390) 

.272 (.413) 

.684 (.827) 

.702 (.837) 

.370 (.623) 

.381 (.636) 

.638 (.803) 

.648 (.811) 

.340 (.643) 

.357 (.660) 

.678 (.802) 

.704 (.815) 

.328 (.570) 

.348 (.588) 

.589 (.789) 

.611 (.802) 

.105 (.347) 

.119 (.364) 

.361 (.576) 

.383 (.596) 

.052 (.197) 

.057 (.211) 

.608 (.809) 

.623 (.818) 

.172 (.444) 

.189 (.458) 
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Table 6. For Double Exponential and( Dbl. Exp.)2 Distributions, Proportion of Times the Null Hypothesis of 
Equal Variances Was Rejected by the Various Tests, Under the Null Hypothesis (test size) and (in 
parentheses ) Under the Alternative Hypothesis ( power), at a = .05 

Dbl. Exp. Distribution: Symmetric (Dbl. Exp.)2: Asymmetric 

n=(5,5,5,5) (10,10,10,10) (20,20,20,20) (5,5,20,20) (10,10,10,10) 

TABLE 1 TESTS 

N-P 
N-P:med 
Bar 
Bar:med 
Coch 
Coch:med 
Hart 
Hart:med 
Bar3 
Bar3:med 
Sam 
Sam:med 
Lehl 
Lehl :med 
Leh2 
Leh2:med 

TABLE 2 TESTS 

Barl 
Barl :med 
Bar2 
Bar2:med 
Schl 
Schl :med 
Sch2 
Sch2:med 

TABLE 3 TESTS 

Levl 
Levl:med 
Lev2 
Lev2 :med 
Lev3 
Lev4 
Lev4 :med 
Mill 

as the power of the three tests mentioned previously 
for those same symmetric distributions. Therefore, the 
three tests, Levi: med, F-K: med X2, and F-K: med F, 
again appear to be the best tests to use on the basis of 
robustness and power. 

4. APPLICATION TO THE LPR DATA BASE 
Since 1954 the United States government has 

periodically held sales in which offshore leases have 
been offered to the highest bidder for the production 
of oil and gas. The lease, production, and revenue 
(LPR) data base includes detailed information on the 
bids submitted, as well as the yearly production and 
revenue data on each lease. Our interest is in the bids 
submitted on the various leases within each sale. 
Often, the lognormal distribution is used to model 

these bids (Dougherty and Lohrenz 1976). If it is 
reasonable to assume that the variance of the log of 
the bids on each lease is constant within a sale, then 
the scale parameter of the lognormal distribution can 
be estimated using all the bids in the sale. 

The bids in 40 sales were examined. These included 
all the sales held from October 13, 1954 to October 27, 
1977, which is the date of the last sale recorded in the 
data base at the time of this study. We considered only 
leases within a sale receiving two or more bids on the 
lease. The 40 sales averaged about 50 leases per sale, 
with a range from 5 to 133. Although some of the 
leases have as many as 12 or 13 bids, small numbers of 
bids are the general rule, with about half of the leases 
examined having only two bids submitted on them. 

For example, the sale held on July 21, 1970 was the 
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(5,5,20,20) 

.316 

.322 

.157 

.164 

.154 

.164 

.134 

.139 

.161 

.170 

.135 

.145 

.275 

.278 

.404 

.401 

(.553) 
(.556) 
(.395) 
(.397) 
(.386) 
(.381) 
(.345) 
(.348) 
(.402) 
(.401) 
(.364) 
(.365) 
(.504) 
(.507) 
(.620) 
(.627) 

.339 

.340 

.273 

.275 

.232 

.236 

.248 

.252 

.275 

.275 

.261 

.265 

.315 

.313 

.361 

.366 

(.713) 
(.713) 
(.661) 
(.659) 
(.592) 
(.593) 
(.624) 
(.629) 
(.661) 
(.659) 
(.653) 
(.650) 
(.687) 
(.689) 
(.728) 
(.727) 

.316 

.317 

.288 

.292 

.214 

.212 

.264 

.267 

.288 

.293 

.284 

.285 

.314 

.315 

.334 

.341 

(.836) 
(.835) 
(.821) 
(.822) 
(.762) 
(.764) 
(.806) 
(.806) 
(.821) 
(.822) 
(.819) 
(.820) 
(.831) 
(.828) 
(.841) 
(.840) 

.333 

.333 

.233 

.240 

.324 

.340 

.460 

.457 

.236 

.243 

.213 

.231 

.317 

.314 

.357 

.356 

(.801) 
(.795) 
(.710) 
(.697) 
(.721) 
(.712) 
(.815) 
(.807) 
(.711) 
(.699) 
(.670) 
(.663) 
(.790) 
(.779) 
(.809) 
(.803) 

.876 

.881 

.856 

.860 

.723 

.724 

.845 

.849 

.856 

.862 

.853 

.853 

.868 

.874 

.888 

.889 

(.912) 
(.914) 
(.892) 
(.891) 
(.773) 
(.777) 
(.888) 
(.888) 
(.892) 
(.892) 
(.888) 
(.887) 
(.907) 
(.910) 
(.921) 
(.924) 

.883 

.886 

.832 

.830 

.798 

.799 

.908 

.906 

.833 

.834 

.808 

.805 

.866 

.872 

.883 

.886 

(.933) 
(.934) 
(.897) 
(.898) 
(.856) 
(.855) 
(.950) 
(.950) 
(.897) 
(.898) 
(.884) 
(.885) 
(.929) 
(.930) 
(.939) 
(.939) 

.450 

.238 

.047 

.010 

.470 

.325 

.167 

.087 

(.553) 
(.470) 
.129) 
.041) 

(.671) 
(.548) 
(.298) 
(.176) 

.273 

.199 

.054 

.016 

.313 

.250 

.101 

.069 

(.641) 
(.563) 
(.232) 
(.165) 
(.668) 
(.603) 
(.322) 
(.243) 

.169 

.144 

.050 

.033 

.190 

.170 

.079 

.058 

(.727) 
(.701) 
(.492) 
(.440) 
(.739) 
(.718) 
(.511) 
(.460) 

.179 

.133 

.046 

.020 

.254 

.210 

.116 

.082 

(.605) 
(.546) 
(.289) 
(.229) 
(.717) 
(.663) 
(.486) 
(.416) 

.696 

.551 

.172 

.071 

.758 

.652 

.361 

.249 

(.766) 
(.654) 
.230) 
.099) 

(.819) 
(.741) 
(.453) 
(.310) 

.439 

.332 

.100 

.024 

.598 

.514 

.284 

.188 

(.557) 
(.454) 
(.153) 
.073) 

(.759) 
(.693) 
(.468) 
(.355) 

.097 

.008 

.057 

.010 

.098 

.121 

.000 

.046 

(.268) 
(.051) 
(.155) 
(.051) 
(.229) 
(.290) 
(.008) 
(.136) 

.077 

.033 

.048 

.024 

.077 

.093 

.045 

.067 

(.415) 
(.291) 
(.266) 
(.184) 
(.326) 
(.419) 
(.306) 
(.319) 

.068 

.039 

.040 

.027 

.078 

.082 

.041 

.087 

(.645) 
(.591) 
(.524) 
(.473) 
(.498) 
(.630) 
(.562) 
(.537) 

.087 

.035 

.079 

.048 

.087 

.092 

.047 

.107 

(.396) 
(.325) 
(.194) 
(.143) 
(.404) 
(.458) 
(.413) 
(.419) 

.473 

.048 

.074 

.012 

.741 

.715 

.145 

.195 

(.579) 
(.092) 
(.115) 
(.024) 
(.805) 
(.803) 
(.226) 
(.240) 

.384 

.060 

.149 

.078 

.729 

.688 

.099 

.214 

(.420) 
(.057) 
(.077) 
(.027) 
(.836) 
(.797) 
(.199) 
(.291) 
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TESTS FOR HOMOGENEITY OF VARIANCES 

Table 6 (Continued) 
Dbl. Exp. Distribution: Symmetric (Dbl. Exp.)2: Asymmetric 

n=(5,5,5,5) (10,10,10,10) (20,20,20,20) (5,5,20,20) (10,10,10,10) 

TABLE 4 TESTS 

Mood X2 
Mood F 
Mood:med 
Mood:med 

X2 
F 

F-A-B X2 
F-A-B F 
F-A-B:med X2 
F-A-B:med F 

Klotz X2 
Klotz F 
Klotz:med X2 
Klotz:med F 

S-R X2 
S-R F 
S-R:med 
S-R:med 

F-K X2 
F-K F 
F-K:med 
F-K:med 

T-G X2 
T-G F 
T-G:med 
T-G:med 

X2 
F 

X2 
F 

X2 
F 

.080 (.221) 

.121 (.275) 

.003 (.027) 

.009 (.048) 

.091 (.195) 

.112 (.240) 

.000 (.000) 

.000 (.000) 

.072 (.223) 

.105 (.273) 

.012 (.061) 

.016 (.081) 

.087 (.241) 

.115 (.289) 

.000 (.010) 

.003 (.029) 

.058 (.214) 

.086 (.263) 

.005 (.040) 

.011 (.063) 

.095 (.217) 

.122 (.264) 

.000 (.000) 

.000ooo (.000) 

.919 (.936) 

.928 (.945) 

.573 (.670) 

.597 (.687) 

20th sale in chronological sequence. It had 13 leases 
that received two or more bids apiece. A special simu- 
lation study for this number of leases, with the same 
sample sizes, was reported in Table 5 and mentioned 
in Section 3. Some of the tests for variances rejected 
the null hypothesis over 70 percent of the time even 
though the normal distribution was used in the simu- 
lation and Ho was true. It is useless to consider such 
tests for real data, since the results of such tests would 
be meaningless. Therefore, the results of only those 
tests that had well-controlled Type I error rates in the 
simulation study are examined in this section. This 
includes the five tests that had estimated test sizes less 
than .112 in all cases described in Section 3. For each 
of the five test statistics in each of the 40 sales, the P 
values were obtained by referring to the appropriate 
chi squared or F distribution. If Ho is true these P 
values should be uniform on (0, 1), but if Ho is false 
they should tend to be smaller. For each test, the 40 P 
values were summed and normalized by subtracting 
20 and dividing by ,/40/12. The results appear in 
Table 7, column (2). Column (3) in Table 7 is simply 
the overall P value obtained by comparing the statis- 
tic in column (2) with the standard normal dis- 
tribution. 

For all five tests the overall P value is well above 5 
percent, clearly indicating that the null hypothesis of 

equal variances should be accepted. In fact, for the 
two tests Bar2 :med and Lev2 :med, the overall P value 
is in the opposite tail of the distribution, suggesting 
that the asymptotic approximations used in those 
tests may be too conservative. This could also explain 
the well-controlled Type I error rate and the low 
power in the simulation study of Section 3 for those 
two tests. The three tests, Levl :med, F-K :med X2, and 
F-K: med F, do not exhibit this weakness. They all 
have overall P values that do in fact resemble obser- 
vations on a uniformly distributed random variable. 
Again, the same three tests show the same desirable 
properties. 

It was mentioned previously that if Ho is true, the p 
values should be uniform on (0, 1). A Kolmogorov 
goodness-of-fit test was used on the 40 P values to see 
how well they agreed with the uniform distribution. 
The test statistics for Levl :med, F-K:med X2, and 

Table 7. Summary of P Values for 5 Tests, 40 
Applications Each 

(1) Test 

Bar2:med 
Levl :med 
Lev2:med 
F-K:med X2 
F-K:med F 

(2) Standardized 
p-value Sum 

6.109 
-0.530 
2.998 
0.766 
1.034 

(3) p-value 
of Col (2) 

1.000 
.298 
.999 
.778 
.849 
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.065 

.069 

.041 

.045 

(5,5,20,20) 

(.592) 
(.598) 
(.523) 
(.533) 

.082 

.090 

.036 

.039 

(.424) 
(.440) 
(.356) 
(.373) 

.068 (.536) 

.077 (.546) 

.035 (.447) 

.036 (.454) 

.855 (.892) 

.863 (.899) 

.505 (.668) 

.528 (.682) 

.071 (.403) 

.082 (.420) 

.043 (.368) 

.048 (.385) 

.087 

.095 

.036 

.041 

.082 

.094 

.045 

.053 

.077 

.082 

.039 

.044 

.086 

.097 

.031 

.034 

.067 

.076 

.026 

.030 

.095 

.099 

.039 

.047 

(.372) 
(.388) 
(.262) 
(.275) 

(.325) 
(.349) 
(.228) 
(.245) 

(.388) 
(.410) 
(.286) 
(.303) 

(.386) 
(.408) 
(.250) 
(.269) 

(.387) 
(.405) 
(.274) 
(.293) 

(.342) 
(.364) 
(.222) 
(.237) 

.070 

.075 

.037 

.039 

.069 

.071 

.042 

.042 

.063 

.067 

.033 

.036 

.070 

.072 

.033 

.034 

(.629) 
(.637) 
(.575) 
(.584) 

(.599) 
(.607) 
(.526) 
(.536) 

(.632) 
(.639) 
(.581) 
(.588) 

(.545) 
(.554) 
(.447) 
(.457) 

.908 

.913 

.562 

.575 

.907 

.923 

.516 

.537 

.842 

.851 

.254 

.262 

.660 

.677 

.099 

.112 

.847 

.863 

.364 

.382 

.079 

.085 

.045 

.050 

.081 

.087 

.029 

.032 

.074 

.077 

.032 

.037 

.076 

.082 

.037 

.043 

(.925) 
(.935) 
(.660) 
(.680) 

(.923) 
(.934) 
(.615) 
(.641) 

(.891) 
(.902) 
(.342) 
(.365) 

(.755) 
(.768) 
(.195) 
(.210) 

(.890) 
(.899) 
(.458) 
(.480) 

(.390) 
(.408) 
(.330) 
(.345) 

(.445) 
(.460) 
(.355) 
(.371) 

(.383) 
(.401) 
(.317) 
(.331) 

(.429) 
(.446) 
(.358) 
(.376) 

.829 

.834 

.474 

.494 

.838 

.849 

.483 

.512 

.837 

.846 

.145 

.153 

.632 

.651 

.076 

.080 

.845 

.858 

.251 

.266 

(.862) 
(.869) 
(.679) 
(.694) 

(.865) 
(.877) 
(.595) 
(.616) 

(.909) 
(.915) 
(.312) 
(.326) 

(.711) 
(.729) 
(.152) 
(.160) 

(.920) 
(.924) 
(.439) 
(.451) 
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F-K:med F are .136, .112, and .132, respectively, all 
well below the a = .20 critical value .165 for n = 40. 
Thus, these P values are consistent with a uniform 
distribution. 

The correlation between pairs of these three tests is 
interesting to examine to see if the tests tend to agree 
in results. The sample correlation coefficient for these 
40 P values is .846 between Levl :med and F-K:med 
X2, and .838 between Levl:med and F-K:med F, 
which indicates a strong, but not perfect, linear associ- 
ation in both cases. Since the test statistics for 
F-K :med X2 and F-K :med F are functionally related, 
the high correlation value of .997 is expected between 
those two. 

5. SUMMARY AND CONCLUSIONS 
Many of the tests for variances that receive wide- 

spread usage, such as Bar, Coch, and Hart, have un- 
controlled risk of Type I errors when the populations 
are asymmetric and heavy-tailed. Even the more 
popular nonparametric tests, such as Mood, Klotz, 
and F-A-B, show unstable error rates when they are 
modified for the case in which the population means 
are unknown. Thus, it is important to find some tests 
for variances, when the population means are un- 
known, that show stable error rates and reasonable 
power. 

After extensive simulation involving different dis- 
tributions, sample sizes, means, and variances, three 
tests appear to be superior selections in terms of ro- 
bustness and power. These are Levl:med, F-K:med 
X2, and F-K :med F, which are described in Section 2. 
These tests and two others that showed some good 
properties were applied to oil and gas lease bidding 
data to see if the logs of the bids exhibited homoge- 
neity of variance from lease to lease within a sale. 
After combining test information over 40 different 
sales (40 applications of each multisample test for 
variance), the results were conclusive. All of the three 
selected tests indicated a good agreement with the null 
hypothesis. The other two tests appeared to be too 
conservative. Therefore, it seems reasonable to assume 
homogeneity of variance of the logs of the bids from 
lease to lease within a sale. Also, it seems reasonable 
to recommend Levl :med, F-K:med X2, and F-K :med 
F as robust and powerful tests for variances when the 
population means are unknown. Some more specific 
comments pertaining to the individual results are as 
follows. 

1. Replacing the mean X by the median X pro- 
duced a dramatic decrease in the Type I error rate in 
some tests, but had almost no discernible effect on 
other tests. All five of the tests chosen as robust tests 
used the median rather than the mean. On the other 
hand, the tests of Table 1 gave essentially the same 

results with the median as with the mean. Use of the 
median affected all of the tests in Table 4 by bringing 
their Type I error rates closer to acceptable limits. 

2. The X2 and F approximations resulted in nearly 
identical tests when both approximations were tried. 
In all cases the Type I error rate and the power were 
slightly larger when the F approximation was used 
than when the X2 approximation was used. 

3. The kurtosis tests of Table 2 were the only ones 
that performed poorly with the normal distributions 
when the sample sizes were equal. Their performance 
improved with increasing sample sizes, however. 

4. A striking result of this simulation study is the 
extremely poor performance of most of these tests 
when the distributions were asymmetric and heavy- 
tailed. 

5. Some of the tests never rejected the null hypoth- 
esis when the sample sizes were (5, 5, 5, 5). These were 
the Talwar-Gentle test using the median and the 
Freund-Ansari-Bradley test with the median. The 
nominal critical values were larger than the maximum 
possible value of the test statistic in both cases. This 
peculiarity occurs with small, odd, sample sizes when 
the median is used. If the middle observation in each 
sample is deleted, the problem is eliminated. Ad- 
ditional simulations, not reported here, bear this out. 
However, the Type I error rate sometimes becomes 
inflated to an unsatisfactory level. This happened with 
the T-G:med and Levl:med tests, but the F-K:med 
X2 and F-K:med F tests were still under control in 
these additional studies. Therefore, we recommend 
that the median be deleted when ni < 19 and odd with 
those two tests. 
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